A Novel PSO-Based Adaptive Filter Structure with Switching Selection Criteria for Active Noise Control

Author:

Pichardo EduardoORCID,Anides Esteban,Vazquez AngelORCID,Vazquez Eduardo,Sánchez Juan C.,Pérez Héctor M.ORCID,Sánchez GabrielORCID,Avalos Juan G.ORCID,Sánchez GiovannyORCID

Abstract

In recent years, active noise control (ANC) systems have been widely used in advanced electronic appliances. Nowadays, several authors use gradient-optimization algorithms since they can be easily implemented in these devices. However, these algorithms need to estimate the secondary path in advance. As consequence, this factor can limit its use in real-ANC applications since the secondary path can undergo significant variations over time. To solve this problem, we propose an ANC system with switching filter selection based on particle swarm optimization (PSO) algorithms. Specifically, we use two sets of populations of particles with different acceleration coefficients and inertia weights to create an advanced structure in which the first PSO algorithm guarantees a high convergence speed while the use of the second PSO algorithm allows to achieve a high-level noise reduction. The results demonstrate that the proposed algorithm exhibits better convergence properties compared with previously reported solutions.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3