A High-Performance Piezoelectric Micropump with Multi-Chamber in Series

Author:

Liu Xiaopeng,Li Xingqi,Wang Meng,Cao Shuaiqi,Wang Xinfeng,Liu GuojunORCID

Abstract

Based on the multi-chamber series structure, a piezoelectric micropump with high output performance is proposed in this paper. The proposed micropump is composed of the circular unimorph piezoelectric vibrator, the cantilever check valve, and the pump body. First, the working process of the piezoelectric micropump was analyzed in detail. Then, the effect of the key dimension parameters on the output performance of the micropump was explored. The key dimension parameters mainly refer to the height of the pump chamber and valve opening (the deformation size of the valve). Finally, experimental prototypes with different parameters were fabricated for the evaluation of the output performance of the micropump. The experimental results show that when the pump chamber height is 0.1 mm and the valve opening is 0.4 mm, the piezoelectric micropump has a good comprehensive output performance. In particular, at 170 V and 120 Hz, the maximum flow rate of the dual-chamber series pump is 65.5 mL/min, and at 100 Hz, the maximum output pressure reaches 59.1 kPa. Moreover, at a certain voltage of 170 V, when the drive frequency is 450 Hz and 550 Hz, the output flow rate and pressure of the four-chamber series pump reach a maximum of 110 mL/min and exceed 140 kPa, respectively. In addition, the volumes of the proposed single-chamber, dual-chamber series, and four-chamber series micropumps are 22 mm × 22 mm × 5 mm, 32.6 mm × 22 mm × 5 mm, and 53.8 mm × 22 mm × 5 mm, respectively. The proposed piezoelectric micropump has the advantages of simple structure, low cost, miniaturization, and high output performance, thus gaining potential practicality for biomedical applications, cooling systems, fuel supply, chemical applications, etc.

Funder

National Natural Science Foundation of China

Jilin Province Natural Science Foundation Projects

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3