Abstract
In this work, we have used TiO2 and SnO2 layers as electron selective contact (ESC) in n-i-p perovskite solar cells configuration. To study and compare the ion migration kinetics of these ESC, CsFAMAPbIBr and MAPbI3-based devices were fabricated and characterised in fresh (1 day) and aged (28 days) conditions. Depending on the ESC and perovskite composition, devices reveal a different progression over time in terms of hysteresis and performance. Using transient photovoltage (TPV) and transient photocurrent (TPC) techniques, we studied the kinetics of carrier extraction and recombination, which showed that aged devices present slower recombination kinetics compared to their fresh counterparts, revealing a positive effect of the aging process. Finally, transient of the transient, derived from the TPV technique, discloses that TiO2 accumulates more charges in the ESC/perovskite interface compared to SnO2 and that the ion migration kinetics are directly related to the perovskite composition.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献