A Hybrid Many-Objective Optimization Algorithm for Job Scheduling in Cloud Computing Based on Merge-and-Split Theory

Author:

Khaleel Mustafa Ibrahim1ORCID,Safran Mejdl2ORCID,Alfarhood Sultan2ORCID,Zhu Michelle3ORCID

Affiliation:

1. Computer Department, College of Science, University of Sulaimani, Kurdistan Regional Government, Sulaimani 46001, Iraq

2. Department of Computer Science, College of Computer and Information Sciences, King Saud University, P.O. Box 51178, Riyadh 11543, Saudi Arabia

3. Department of Computer Science, College of Science and Mathematics, Montclair State University, Montclair, NJ 07043, USA

Abstract

Scheduling jobs within a cloud environment is a critical area of research that necessitates meticulous analysis. It entails the challenge of optimally assigning jobs to various cloud servers, each with different capabilities, and is classified as a non-deterministic polynomial (NP) problem. Many conventional methods have been suggested to tackle this difficulty, but they often struggle to find nearly perfect solutions within a reasonable timeframe. As a result, researchers have turned to evolutionary algorithms to tackle this problem. However, relying on a single metaheuristic approach can be problematic as it may become trapped in local optima, resulting in slow convergence. Therefore, combining different metaheuristic strategies to improve the overall system enactment is essential. This paper presents a novel approach that integrates three methods to enhance exploration and exploitation, increasing search process efficiency and optimizing many-objective functions. In the initial phase, we adopt cooperative game theory with merge-and-split techniques to train computing hosts at different utilization load levels, determining the ideal utilization for each server. This approach ensures that servers operate at their highest utilization range, maximizing their profitability. In the second stage, we incorporate the mean variation of the grey wolf optimization algorithm, making significant adjustments to the encircling and hunting phases to enhance the exploitation of the search space. In the final phase, we introduce an innovative pollination operator inspired by the sunflower optimization algorithm to enrich the exploration of the search domain. By skillfully balancing exploration and exploitation, we effectively address many-objective optimization problems. To validate the performance of our proposed method, we conducted experiments using both real-world and synthesized datasets, employing CloudSim software version 5.0. The evaluation involved two sets of experiments to measure different evaluation metrics. In the first experiment, we focused on minimizing factors such as energy costs, completion time, latency, and SLA violations. The second experiment, in contrast, aimed at maximizing metrics such as service quality, bandwidth utilization, asset utilization ratio, and service provider outcomes. The results from these experiments unequivocally demonstrate the outstanding performance of our algorithm, surpassing existing state-of-the-art approaches.

Funder

Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3