Prospects for the Use of Echinochloa frumentacea for Phytoremediation of Soils with Multielement Anomalies

Author:

Gorelova Svetlana V.,Muratova Anna Yu.ORCID,Zinicovscaia IngaORCID,Okina Olga I.ORCID,Kolbas AliaksandrORCID

Abstract

In a model experiment, some adaptive characteristics, the bioaccumulation of toxic elements from technogenically-contaminated soils with polyelement anomalies, and rhizosphere microflora of Japanese millet, Echinochloa frumentacea, were studied using biochemical, microbiological, physicochemical (AAS, ICP-MS, INAA), and metagenomic (16S rRNA) methods of analysis. Good adaptive characteristics (the content of photosynthetic pigments, low molecular weight antioxidants) of E. frumentacea grown on the soils of metallurgical enterprises were revealed. The toxic effect of soils with strong polyelement anomalies (multiple excesses of MPC for Cr, Ni, Zn, As, petroleum products) on biometric parameters and adaptive characteristics of Japanese millet were shown. The rhizosphere populations of E. frumentacea grown in the background soil were characterized by the lowest taxonomic diversity compared to the rhizobiomes of plants grown in contaminated urban soils. The minimal number of all groups of microorganisms studied was noted in the soils, which contain the highest concentrations of both inorganic (heavy metals) and organic (oil products) pollutants. The taxonomic structure of the rhizospheric microbiomes of E. frumentacea was characterized. It has been established that E. frumentacea accumulated Mn, Co, As, and Cd from soils with polyelement pollution within the average values. V was accumulated mainly in the root system (transfer factor from roots to shoots 0.01–0.05) and its absorption mechanism is rhizofiltration. The removal of Zn by shoots of E. frumentacea increased on soils where the content of the element exceeded the MPC and was 100–454 mg/kg of dry weight (168–508 g/ha). Analysis of the obtained data makes it possible to recommend E. frumentacea for phytoremediation of soil from Cu and Zn at a low level of soil polyelement contamination using grass mixtures.

Funder

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

Earth-Surface Processes,Soil Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3