A Nematode Community-Based Integrated Productivity Efficiency (IPE) Model That Identifies Sustainable Soil Health Outcomes: A Case of Compost Application in Carrot Production

Author:

Habteweld Alemayehu,Kravchenko Alexandra N.,Grewal Parwinder S.,Melakeberhan Haddish

Abstract

Percent soil organic matter (SOM), pH and crop yield are among the biophysicochemical process-driven soil health indicators (SHIs). However, identifying sustainable soil health conditions using these SHIs is limited due to the lack of Integrated Productivity Efficiency (IPE) models. We define IPE as a concept that identifies best-to-worst-case soil health outcomes by assessing the effect of agronomic practices on weighted abundance of functional guilds (WAFG) of beneficial soil organisms and SHIs simultaneously. Expressing WAFG of all beneficial nematodes (x-axis) and SHIs (y-axis) as a percent of untreated control and regression of x and y reveals four quadrants describing worst-to-best-case outcomes for soil health and sustainability. We tested the effects of composted cow manure (AC) and plant litter (PC) applied at 135 (1×), 203 (1.5×), and 270 (2×) kg N/ha on WAFG, SOM, pH, and yield in a sandy clay loam field of a processing carrot cultivar over three growing seasons. Untreated control and urea at 1× served as experimental controls. Data that varied by time and were difficult to make sense of were separated into sustainable, unsustainable, or requiring specific modification to be sustainable categories by the IPE model. Within the sustainable category, all AC treatments and 2× rate of PC treatments had the best integrated efficiency outcomes across the SHIs. The IPE model provides a platform where other biophysicochemical process-driven SHIs could be integrated.

Funder

USDA/NIFA, Project GREEEN (state initiative), Michigan Carrot Commission and Michigan Vegetable Council

Publisher

MDPI AG

Subject

Earth-Surface Processes,Soil Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3