Selenium Uptake by Lettuce Plants and Se Distribution in Soil Chemical Phases Affected by the Application Rate and the Presence of a Seaweed Extract-Based Biostimulant

Author:

Zafeiriou Ioannis,Gasparatos DionisiosORCID,Ioannou Dafni,Massas Ioannis

Abstract

To tackle selenium (Se) malnutrition, biofortification is among the proposed strategies. A biostimulant application in soils is thought to support a plant’s growth and productivity. Biofortification with Se(VI) may lead to a leaching hazard due to the high mobility of Se(VI) in the soil environment. In this study, the effect of the application of two Se(VI) rates—5 and 10 mg kg−1 soil—and a biostimulant on the Se uptake by lettuce plants and on the Se(VI) distribution in soil fractions following the plants harvest, was investigated. Phosphorus (P) and sulfur (S) concentrations in plants were also determined. A high Se(VI) rate suppressed plant growth, leading to a significant fresh weight decrease from 12.28 to 7.55 g and from 14.6 to 2.43 g for the control and high Se(VI) without and with biostimulants, respectively. Impaired plant growth was verified by the SPAD, NDVI and NDRE measurements. The significantly highest Se concentration in plants, 325 mg kg−1, was recorded for the high Se(VI) rate in the presence of the biostimulant. Compared to controls, the low Se(VI) rate significantly decreased P and increased the S concentrations in plants. The post-harvest soil fractionation revealed that, in the presence of the biostimulant, the Se(VI) soluble fraction increased from 0.992 to 1.3 mg kg−1 at a low Se(VI) rate, and decreased from 3.T85 to 3.13 mg kg−1 at a high Se(VI) rate. Nevertheless, at a low Se(VI) rate, 3.6 and 3.1 mg kg−1 of the added Se(VI) remained in the soil in less mobile forms, in the presence or absence of the biostimulant, respectively. This study indicated that the exogenous application of Se in soil exerted dual effects on lettuce growth and Se availability, depending on the level of selenate applied.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Soil Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3