Soil Properties of a Tef-Acacia decurrens-Charcoal Production Rotation System in Northwestern Ethiopia

Author:

Beshir MifthaORCID,Yimer FantawORCID,Brüggemann Nicolas,Tadesse Menfese

Abstract

A tef-Acacia decurrens-charcoal production rotation system, a unique indigenous climate-smart agricultural technology of northwest Ethiopia, is increasingly seen as a promising strategy for improving soil properties. This study investigated the effect of the tef-Acacia decurrens-charcoal production rotation system on soil properties. In total, 112 soil samples (7 treatments × 4 depths × 4 replicates) were collected and analyzed inside and outside randomly selected charcoal production spots in the tef-Acacia decurrens-charcoal production rotation system and from an adjacent tef monocropping system. The soil properties examined generally exhibited significant variation between the tef monocropping system and the tef-Acacia decurrens-charcoal production rotation system, and between soil depths, as well as with respect to charcoal production spots in the system. The system resulted in a significant increase in SOC, TN, available phosphorus, available sodium, available nitrate and ammonium in general, and in total contents of K, P and Mn in the 0–20 cm depth. Charcoal production in the system significantly increased the total content of P, Al, and Fe, as well as the available nitrate and sulfate in the charcoal production spot. The variation in soil proprieties between the land use types and with respect to charcoal production spots in the TACP system were possibly due to the effect of the Acacia decurrens trees, and fire and fine charcoal residues from charcoal production, indicating the capacity of the tef-Acacia decurrens-charcoal production rotation system to improve soil properties.

Funder

Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences Agrosphere

Publisher

MDPI AG

Subject

Earth-Surface Processes,Soil Science

Reference119 articles.

1. Soil Fertility Replenishment in Africa: An Investment in Natural Resource Capital;Sanchez,2015

2. Land Degradation and the Sustainable Development Goals: Threats and Potential Remedies.;Vlek,2017

3. Land Use Land Cover Changes and Its Drivers in Gojeb River Catchment, Omo Gibe Basin, Ethiopia;Dagnachew;J. Agric. Environ. Int. Dev. (JAEID),2020

4. Integrated fertilizer application improves soil properties and maize (Zea mays L.) yield on Nitisols in Northwestern Ethiopia

5. Biofuels, Land Grabbing and Food Security in Africa;Matondi,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3