LLNet: A Fusion Classification Network for Land Localization in Real-World Scenarios

Author:

Chang Kun,Yan Li

Abstract

Lane localization is one of the core tasks in an autonomous driving system. It receives the visual information collected by the camera and the lane marks and road edges information outputted from the perception module and gives lane index for the subsequent decision module. Traditional rule-based lane localization methods using navigation maps can only be effective in regular road scenarios and have poor generalization ability. High-Definition Map (HD map) was originally thought to solve the lane localization problem, but due to the regulations of the relevant departments, HD map is currently not allowed to be used in autonomous driving systems. In addition, many multi-sensor fusion methods have been proposed to solve the lane localization problem. However, due to the extremely strict safety requirements of autonomous driving systems, these well-designed solutions make it difficult to meet the requirements in terms of robustness, efficiency, and stability. To solve these problems, we innovatively define the lane localization task as a classification problem. First, to better utilize the perceptual information outputted from the perceptual model, we design an image-generating method that projects the perceptual information onto a new image and ensures that our model can learn the perceptual features wisely. Second, to better fuse the perceptual and visual information, we propose a fusion structure deep learning neural network named LLNet to address the lane localization problem in an end-to-end manner. Finally, to ensure the generalization ability, robustness, and stability of LLNet, we conduct extensive comparison experiments on a large-scale real-world dataset, with a total mileage of over 400 km. The experiments show that our approach remarkably outperforms the deep learning classification baselines. In the discussion part of this paper, we give a comprehensive and detailed elaboration for the effectiveness of various designs in our LLNet. To our knowledge, LLNet is the first lane localization method based entirely on deep learning. LLNet is added to the self-driving suite for a kind of mass production vehicle that will be available in the summer of 2022, with an expected sales volume more than 300,000.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference46 articles.

1. Patch-based semantic labeling of road scene using colorized mobile LiDAR point clouds;Luo;IEEE Trans. Intell. Transp. Syst.,2015

2. Weakly supervised metric learning for traffic sign recognition in a LIDAR-equipped vehicle;Tan;IEEE Trans. Intell. Transp. Syst.,2016

3. Feature detection for vehicle localization in urban environments using a multilayer LIDAR;Hata;IEEE Trans. Intell. Transp. Syst.,2015

4. ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras

5. Lane Detection for Intelligent Vehicle System Using Image Processing Techniques;Dewangan,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3