A State Space Modeling Method for Aero-Engine Based on AFOS-ELM

Author:

Chen Hongyi,Li Qiuhong,Pang Shuwei,Zhou Wenxiang

Abstract

State space models (SSMs) are important for multi-variable performance analysis and controller design of aero-engines. In order to solve the problems of the traditional state space modeling methods that rely on component-level models (CLMs) and cannot be carried out in real time, an aero-engine state space modeling method based on adaptive forgetting factor online sequential extreme learning machine (AFOS-ELM) is proposed in this paper. The structure of the extreme learning machine (ELM) is determined according to the form of the state space model, and the inverse-free ELM algorithm is used to automatically select the appropriate number of hidden nodes to improve the efficiency of offline initialization. The focus of the ELM on current operation performance is enhanced by the adaptive renewed forgetting factor, which reduces the impact of aero-engine history and deviated data on the current output and improves the accuracy of the model. Then, according to the analytical equation of the ELM model, the state space model of an aero-engine at each sampling time is obtained by using the partial derivative method. The simulation results based on engine test data show that the real-time performance and accuracy of the state space model established online in this paper can meet the needs of aero-engine control system requirement.

Funder

Postgraduate Research & Practice Innovation Program of NUAA

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3