Performance Analysis of a WPCN-Based Underwater Acoustic Communication System

Author:

Xing Ronglin1,Zhang Yuhang1,Feng Yizhi1ORCID,Ji Fei1

Affiliation:

1. School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510641, China

Abstract

Underwater acoustic communication (UWAC) has a wide range of applications, including marine environment monitoring, disaster warning, seabed terrain exploration, and oil extraction. It plays an indispensable and increasingly important role in marine resource exploration and marine economic development. In current UWAC systems, the terminal nodes are usually powered by energy-limited batteries. Due to the harshness of the underwater environment, especially in the ocean environment, it is very costly and difficult, even impossible, to replace the batteries for the terminal nodes in UWACs, which results in the short lifetime and unreliability of the terminal nodes and the systems. In this paper, we present the application of a wireless powered communication network (WPCN) to the UWAC systems to provide an auxiliary and convenient energy supplement for solving the energy-limited problem of the terminal nodes, where the hybrid access point (H-AP) transfers energy to the terminal nodes in the downlink. In contrast, the terminal nodes use the harvested energy to transmit the information to the H-AP in the uplink. To evaluate the proposed WPCN-based UWAC systems, we investigate the performance of the average bit error rate (BER), outage probability, and achievable information rate for the systems in a frequency-selective sparse channel and non-white noise environment. We derive the closed-form expression for the probability density function (PDF) of the received signal-to-noise ratio (SNR). Based on this, we further derive novel closed-form expressions for the average BER and the outage probability of the systems. Numerical results confirm the validity of the proposed analytical results. It is shown that there exists an optimal signal frequency and time allocation factor for the systems to achieve optimal performance, and a larger optimal time allocation factor is preferred for a smaller hybrid access point (H-AP) transmit power or a larger transmission distance, while a smaller optimal signal frequency is required for a larger transmission distance.

Funder

National Natural Science Foundation of China

the Guangdong Basic and Applied Basic Research Foundation

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3