Model for Wastage Allowance and Strength Properties of Pipe Piles Exposed to Marine Corrosion

Author:

Xia Ruilin12,Garbatov Yordan3ORCID,Liu Changyong12,Sun Mingyang4

Affiliation:

1. School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China

2. Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin 150090, China

3. Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Tecnico, Universidade de Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal

4. College of Civil Engineering and Transportation, Northeast Forestry University, Harbin 150040, China

Abstract

The study’s objective is to analyze the mechanical properties of steel pipe piles as a part of a trestle bridge subjected to five years of natural marine corrosion degradation. Sixteen tensile specimens are extracted from the steel pipe piles in the splash, tidal, and immersion zones. The experimental tensile test results are used to establish regression equations defining the elastic modulus, yield strength, strain hardening index, and strength coefficient for the true stress–strain curves of the three regions. A non-linear time-dependent mathematical model is exploited to identify the corrosion degradation, using the data from one single corrosion degradation measurement campaign. The analysis indicates that the splash zone is experiencing the most severe corrosion degradation, and there are progressive losses in the mechanical properties of each zone as the corrosion degradation progresses. The established relationships of the mechanical properties, as a function of the ratio of corroded plate thickness to the as-built one, can be used as a fast-engineering approach to identify the mechanical properties of severely corroded piles. The corrosion degradation allowance is also defined using the first-order reliability method, accounting for existing uncertainties covered by the partial safety factors. By examining the impact of marine corrosion on the mechanical properties of marine structures and developing predictive models to assess the corrosion’s effect on material strength and corrosion allowance, the study aims to improve offshore structures’ safety, design, and maintenance.

Funder

Strategic Research Plan of the Centre for Marine Technology and Ocean Engineering

Portuguese Foundation for Science and Technology

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3