Potential Dynamics of CO2 Stream Composition and Mass Flow Rates in CCS Clusters

Author:

Kahlke Sven-Lasse,Pumpa Martin,Schütz Stefan,Kather Alfons,Rütters Heike

Abstract

Temporal variations in CO2 stream composition and mass flow rates may occur in a CO2 transport network, as well as further downstream when CO2 streams of different compositions and temporally variable mass flow rates are fed in. To assess the potential impacts of such variations on CO2 transport, injection, and storage, their characteristics must be known. We investigated variation characteristics in a scenario of a regional CO2 emitter cluster of seven fossil-fired power plants and four industrial plants that feed captured CO2 streams into a pipeline network. Variations of CO2 stream composition and mass flow rates in the pipelines were simulated using a network analysis tool. In addition, the potential effects of changes in the energy mix on resulting mass flow rates and CO2 stream compositions were investigated for two energy mix scenarios that consider higher shares of renewable energy sources or a replacement of lignite by hard coal and natural gas. While resulting maximum mass flow rates in the trunk line were similar in all considered scenarios, minimum flow rates and pipeline capacity utilisation differed substantially between them. Variations in CO2 stream composition followed the power plants’ operational load patterns resulting e.g., in stronger composition variations in case of higher renewable energy production.

Funder

Federal Ministry for Economic Affairs and Energy

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference53 articles.

1. Potential economies of scale in CO2 transport through use of a trunk pipeline

2. The Costs of CO2 Capture, Transport and Storage,2011

3. Carbon Capture and Storage Cluster Projects: Review and Future Opportunities,2015

4. Carbon Dioxide Capture and Sequestration;Gomes,2013

5. Technologien für Nachhaltigkeit und Klimaschutz—Chemische Prozesse und stoffliche Nutzung von CO2;Bazzanella,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3