Applied Identification of Industry Data Science Using an Advanced Multi-Componential Discretization Model

Author:

Chen You-Shyang,Sangaiah Arun KumarORCID,Chen Su-Fen,Huang Hsiu-Chen

Abstract

Applied human large-scale data are collected from heterogeneous science or industry databases for the purposes of achieving data utilization in complex application environments, such as in financial applications. This has posed great opportunities and challenges to all kinds of scientific data researchers. Thus, finding an intelligent hybrid model that solves financial application problems of the stock market is an important issue for financial analysts. In practice, classification applications that focus on the earnings per share (EPS) with financial ratios from an industry database often demonstrate that the data meet the abovementioned standards and have particularly high application value. This study proposes several advanced multicomponential discretization models, named Models A–E, where each model identifies and presents a positive/negative diagnosis based on the experiences of the latest financial statements from six different industries. The varied components of the model test performance measurements comparatively by using data-preprocessing, data-discretization, feature-selection, two data split methods, machine learning, rule-based decision tree knowledge, time-lag effects, different times of running experiments, and two different class types. The experimental dataset had 24 condition features and a decision feature EPS that was used to classify the data into two and three classes for comparison. Empirically, the analytical results of this study showed that three main determinants were identified: total asset growth rate, operating income per share, and times interest earned. The core components of the following techniques are as follows: data-discretization and feature-selection, with some noted classifiers that had significantly better accuracy. Total solution results demonstrated the following key points: (1) The highest accuracy, 92.46%, occurred in Model C from the use of decision tree learning with a percentage-split method for two classes in one run; (2) the highest accuracy mean, 91.44%, occurred in Models D and E from the use of naïve Bayes learning for cross-validation and percentage-split methods for each class for 10 runs; (3) the highest average accuracy mean, 87.53%, occurred in Models D and E with a cross-validation method for each class; (4) the highest accuracy, 92.46%, occurred in Model C from the use of decision tree learning-C4.5 with the percentage-split method and no time-lag for each class. This study concludes that its contribution is regarded as managerial implication and technical direction for practical finance in which a multicomponential discretization model has limited use and is rarely seen as applied by scientific industry data due to various restrictions.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3