Relationship between the Shear Strength and Microscopic Pore Parameters of Saline Soil with Different Freeze-Thaw Cycles and Salinities

Author:

Wang Jiaqi,Wang Qing,Lin Sen,Han Yan,Cheng Shukai,Wang Ning

Abstract

Saline soil is a widely distributed special soil with poor engineering properties. In seasonally frozen regions, the poor properties of saline soil will cause many types of engineering damage such as road boiling, melt sinking, and subgrade instability. These engineering failures are closely related to the shear strength of saline soil. However, there are relatively few studies on saline soil in cold regions. The strength of the soil is always determined by its microstructure; therefore, the study aims to investigate the relationship between the shear strength and microscopic pore structure of saline soil with different freeze–thaw cycles and salinities. The shear strength characteristics of saline soil with different salinities subjected to different freeze–thaw cycles were obtained by triaxial tests. In addition, the microstructure of the soil samples was investigated by scanning electron microscopy (SEM) tests, and the microscopic pore parameters of the soil samples, including porosity (N), average pore diameter (D¯), average shape coefficient (K), surface fluctuation fractal dimension (F), and orienting probability entropy (Hm), were obtained by image processing software quantitatively. Based on the experimental results, the influence of freeze–thaw cycles and salinity on the shear strength characteristics and microstructure of the soil samples were analyzed. Besides that, in order to effectively eliminate the collinearity between independent variables and obtain a stable and reasonable regression model, principal component regression (PCR) analysis was adopted to establish the relationship between the microscopic pore parameters and the failure strength of the soil samples. The fitting results demonstrated that the failure strength of saline soil is mainly related to the size and direction of the pores in the soil, and it has little correlation with pore shape. The failure strength of the soil was negatively correlated with the average pore diameter (D¯) and porosity (N), and it was positively correlated with the orienting probability entropy of the pores (Hm). This study may provide a quantitative basis for explaining the variation mechanism of the mechanical properties of saline soil from a microscopic perspective and provide references for the symmetry between the changes of the macroscopic properties and microscopic pore structure of the saline soil in cold regions.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3