MADICS: A Methodology for Anomaly Detection in Industrial Control Systems

Author:

Perales Gómez Ángel LuisORCID,Fernández Maimó LorenzoORCID,Huertas Celdrán AlbertoORCID,García Clemente Félix J.ORCID

Abstract

Industrial Control Systems (ICSs) are widely used in critical infrastructures to support the essential services of society. Therefore, their protection against terrorist activities, natural disasters, and cyber threats is critical. Diverse cyber attack detection systems have been proposed over the years, in which each proposal has applied different steps and methods. However, there is a significant gap in the literature regarding methodologies to detect cyber attacks in ICS scenarios. The lack of such methodologies prevents researchers from being able to accurately compare proposals and results. In this work, we present a Methodology for Anomaly Detection in Industrial Control Systems (MADICS) to detect cyber attacks in ICS scenarios, which is intended to provide a guideline for future works in the field. MADICS is based on a semi-supervised anomaly detection paradigm and makes use of deep learning algorithms to model ICS behaviors. It consists of five main steps, focused on pre-processing the dataset to be used with the machine learning and deep learning algorithms; performing feature filtering to remove those features that do not meet the requirements; feature extraction processes to obtain higher order features; selecting, fine-tuning, and training the most appropriate model; and validating the model performance. In order to validate MADICS, we used the popular Secure Water Treatment (SWaT) dataset, which was collected from a fully operational water treatment plant. The experiments demonstrate that, using MADICS, we can achieve a state-of-the-art precision of 0.984 (as well as a recall of 0.750 and F1-score of 0.851), which is above the average of other works, proving that the proposed methodology is suitable for use in real ICS scenarios.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Critical Infrastructure Security: Unsupervised Learning Approaches for Anomaly Detection;International Journal of Computational Intelligence Systems;2024-09-10

2. CASPER: Context-Aware IoT Anomaly Detection System for Industrial Robotic Arms;ACM Transactions on Internet of Things;2024-08

3. AFMF: Time series anomaly detection framework with modified forecasting;Knowledge-Based Systems;2024-07

4. WaXAI: Explainable Anomaly Detection in Industrial Control Systems and Water Systems;Proceedings of the 10th ACM Cyber-Physical System Security Workshop;2024-07

5. A Game-Theoretical Self-Adaptation Framework for Securing Software-Intensive Systems;ACM Transactions on Autonomous and Adaptive Systems;2024-04-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3