Abstract
Building upon the notion of the Gutman index SGut(G), Mao and Das recently introduced the Steiner Gutman index by incorporating Steiner distance for a connected graph G. The Steiner Gutman k-index SGutk(G) of G is defined by SGutk(G)=∑S⊆V(G),|S|=k∏v∈SdegG(v)dG(S), in which dG(S) is the Steiner distance of S and degG(v) is the degree of v in G. In this paper, we derive new sharp upper and lower bounds on SGutk, and then investigate the Nordhaus-Gaddum-type results for the parameter SGutk. We obtain sharp upper and lower bounds of SGutk(G)+SGutk(G¯) and SGutk(G)·SGutk(G¯) for a connected graph G of order n, m edges, maximum degree Δ and minimum degree δ.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Reference25 articles.
1. Graph Theory;Bondy,2008
2. Distance in Graphs;Buckley,1990
3. Distance in graphs;Goddard,2011
4. Upper bounds on the Steiner diameter of a graph
5. Steiner distance and convexity in graphs
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献