Research on Energy Dissipation of Hydrofoil Cavitation Flow Field with FBDCM Model

Author:

Huang Rui1ORCID,Wang Yulong1,Xu Haitao1,Qiu Chaohui1,Ma Wei1

Affiliation:

1. State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China

Abstract

In order to obtain a more detailed and comprehensive relationship between the cavitation phenomenon and energy loss, this paper takes an NACA66 hydrofoil as an example to analyze the specific relationship between the cavitation flow field and energy dissipation by using entropy production theory, a ZGB cavitation model, and k-ε turbulence model which were modified by a Filter-Based Density Correction model (FBDCM). The results show that the modified k-ε model can effectively capture the morphology of cavity evolution in the cavitation flow field. The vortex dilatation term contributes the most to the vorticity transport in cavitation flow. The energy loss of the cavitation flow field is primarily composed of turbulent dissipation, which is primarily distributed in the area below the lifted attached cavity and inside the vortex induced by the cloud cavity. The direct dissipation entropy production is predominantly distributed in the area near the stagnation point of the hydrofoil’s leading edge and inside the cavity. The wall entropy production is chiefly distributed in the area where the cavity is not covered. The cavitation entropy production mainly occurs on the vapor–liquid interface, and the value is negative, indicating that the vapor–liquid conversion in the cavitation process needs to absorb energy from the flow field.

Funder

Shaanxi Natural Science Basic Research Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3