Research on the Effect of Static Pressure on the Rheological Properties of Waxy Crude Oil

Author:

Yang Chao1ORCID,Qi Jingjing1,Li Bingfan2ORCID,Luo Haijun3

Affiliation:

1. Technology Inspection Center of Shengli Oilfield, SINOPEC, Dongying 257000, China

2. School of Vehicle and Energy, Yanshan University, Qinhuangdao 066004, China

3. School of Petroleum Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China

Abstract

In this paper, with the application of a MARS 60 high-pressure rheometer, experimental tests are conducted on Shengli crude oil to test its gel point, viscosity and thixotropy under different static pressures. Consequently, the effect of static pressure on the rheological parameters of waxy crude oil is revealed. It is proven that with the increase in the static pressure, the gel point of Shengli crude oil increases linearly, and the viscosity also gradually increases. The power law equation is employed to describe the relationship between the apparent viscosity and shear rate of Shengli crude oil under different static pressures. With the increase in the static pressure, the consistency coefficient (K) increases linearly, and the rheological index (n) decreases linearly. The relationship between the viscosity of Shengli crude oil and the static pressure and shear rate can be obtained. The Cross thixotropic model is used to describe the thixotropic curve of Shengli crude oil under different static pressures. With the increase in the static pressure, the thixotropic coefficient of consistency (ΔK) and the structure fracture constant (b) increase linearly. This is because a high pressure results in high structure strength and strong non-Newton rheological behavior in gelled crude oil and also causes remarkable structure fracture in crude oil. The results in this paper can provide an important theoretical basis for crude oil production and transportation.

Funder

Hebei Natural Science Foundation

National Natural Science Foundation of China

S&T Program of Qinhuangdao

Natural Science Foundation of Guangdong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3