Advancements and Future Directions in the Application of Machine Learning to AC Optimal Power Flow: A Critical Review

Author:

Jiang Bozhen1ORCID,Wang Qin1ORCID,Wu Shengyu2,Wang Yidi3,Lu Gang2

Affiliation:

1. Department of Electrical and Electronic Engineering, Hong Kong Polytechnic University, Hong Kong SAR, China

2. State Grid Energy Research Institute, Beijing 102209, China

3. China Electric Power Research Institute, Beijing 100055, China

Abstract

Optimal power flow (OPF) is a crucial tool in the operation and planning of modern power systems. However, as power system optimization shifts towards larger-scale frameworks, and with the growing integration of distributed generations, the computational time and memory requirements of solving the alternating current (AC) OPF problems can increase exponentially with system size, posing computational challenges. In recent years, machine learning (ML) has demonstrated notable advantages in efficient computation and has been extensively applied to tackle OPF challenges. This paper presents five commonly employed OPF transformation techniques that leverage ML, offering a critical overview of the latest applications of advanced ML in solving OPF problems. The future directions in the application of machine learning to AC OPF are also discussed.

Funder

The Hong Kong Polytechnic University

Publisher

MDPI AG

Reference93 articles.

1. Zobaa, A.F., Aleem, S.A., and Abdelaziz, A.Y. (2018). Classical and Recent Aspects of Power System Optimization, Academic Press.

2. Contribution a l’etude du dispatching economique;Carpentier;Bull. Soc. Fr. Elec. Ser.,1962

3. Critical review of recent advances and further developments needed in AC optimal power flow;Capitanescu;Electr. Power Syst. Res.,2016

4. Security-constrained unit commitment for electricity market: Modeling, solution methods, and future challenges;Chen;IEEE Trans. Power Syst.,2022

5. Multi-area coordinated decentralized DC optimal power flow;Conejo;IEEE Trans. Power Syst.,1998

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3