Investigation of Energy and Power Characteristics of Various Matrix Multiplication Algorithms

Author:

Alsari Salem1ORCID,Al-Hashimi Muhammad1

Affiliation:

1. Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 25732, Saudi Arabia

Abstract

This work studied the energy behavior of six matrix multiplication algorithms with various physical asset usage patterns. Two were variants of the straight inner product of rows and columns. The rest were variants of Strassen’s divide-and-conquer. Cases varied in ways that were expected to affect energy behavior. The study collected data for square matrix dimensions up to 4000. The research used reliable on-chip integrated voltage regulators embedded in a recent HPC-class AMD CPU for power measurements. Inner product methods used much less energy than the others for small to moderately large matrices. The advantage diminished for sufficiently large dimensions. The power draw of the inner product methods was less for small dimensions. After a point, the power advantage shifted significantly in favor of the divide-and-conquer group (average of 24% better), with the more block-optimized versions showing increased power efficiency (at least 8.3% better than the base method). The study explored the interplay between algorithm design, power efficiency, and computational resources. It aims to help advance the cause of power efficiency in HPC and other scenarios that rely on this vital computation.

Publisher

MDPI AG

Reference31 articles.

1. Accelerated multiple precision matrix multiplication using Strassen’s algorithm and Winograd’s variant;Kouya;JSIAM Lett.,2014

2. A New Algorithm for Inner Product;Winograd;IEEE Trans. Comput.,1968

3. Gaussian elimination is not optimal;Strassen;Numer. Math.,1969

4. On the Additive Complexity of Matrix Multiplication;Probert;SIAM J. Comput.,1976

5. Fog, A. (2022). Technical University of Denmark. Available online: https://www.agner.org/optimize/instruction_tables.pdf.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3