Atlas-Based Segmentation in Extraction of Knee Joint Bone Structures from CT and MR

Author:

Zarychta PiotrORCID

Abstract

The main goal of the approach proposed in this study, which is dedicated to the extraction of bone structures of the knee joint (femoral head, tibia, and patella), was to show a fully automated method of extracting these structures based on atlas segmentation. In order to realize the above-mentioned goal, an algorithm employed automated image-matching as the first step, followed by the normalization of clinical images and the determination of the 11-element dataset to which all scans in the series were allocated. This allowed for a delineation of the average feature vector for the teaching group in the next step, which automated and streamlined known fuzzy segmentation methods (fuzzy c-means (FCM), fuzzy connectedness (FC)). These averaged features were then transmitted to the FCM and FC methods, which were implemented for the testing group and correspondingly for each scan. In this approach, two features are important: the centroids (which become starting points for the fuzzy methods) and the surface area of the extracted bone structure (protects against over-segmentation). This proposed approach was implemented in MATLAB and tested in 61 clinical CT studies of the lower limb on the transverse plane and in 107 T1-weighted MRI studies of the knee joint on the sagittal plane. The atlas-based segmentation combined with the fuzzy methods achieved a Dice index of 85.52–89.48% for the bone structures of the knee joint.

Funder

Silesian University of Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference28 articles.

1. Bochenek, A., and Reicher, M. (1990). The Human Anatomy, Publishing House.

2. Features extraction in anterior and posterior cruciate ligaments analysis;Zarychta;Comput. Med. Imaging Graph.,2015

3. A new approach to knee joint arthroplasty;Zarychta;Comput. Med. Imaging Graph.,2018

4. T2 mapping in patellar chondromalacia;Santiago;Eur. Radiol.,2014

5. The association of patellofemoral joint morphology with chondromalacia patella: A quantitative MRI analysis;Tuna;Clin. Imaging,2014

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3