Identification of Protein–Phenol Adducts in Meat Proteins: A Molecular Probe Technology Study

Author:

Yang Fenhong1,Zhu Yingying2ORCID,Li Xiaohan1,Xiang Fengtao1,Deng Moru1,Zhang Wei1,Song Wei1,Sun Hao1ORCID,Tang Changbo1

Affiliation:

1. State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China

2. Engineering Research Center of Magnetic Resonance Analysis Technology, Department of Food Nutrition and Test, Suzhou Vocational University, Suzhou 210005, China

Abstract

Plant polyphenols with a catechol structure can form covalent adducts with meat proteins, which affects the quality and processing of meat products. However, there is a lack of fast and effective methods of characterizing these adducts and understanding their mechanisms. This study aimed to investigate the covalent interaction between myofibrillar protein (MP) and caffeic acid (CA), a plant polyphenol with a catechol structure, using molecular probe technology. The CA-MP adducts were separated via sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) and detected via Western blot and LC-MS/MS analyses. The Western blot analysis revealed that various specific adducts were successfully enriched and identified as bands around 220 kDa, 45 kDa, and two distinct bands between 95 and 130 kDa. Combined with the LC-MS/MS analysis, a total of 51 peptides were identified to be CA-adducted, corresponding to 31 proteins. More than 80% of the adducted peptides carried one adducted site, and the rest carried two adducted sites. The adducted sites were located on cysteine (C/Cys), histidine (H/His), arginine (R/Arg), lysine (K/Lys), proline (P/Pro), and N-terminal (N-Term) residues. Results showed that the covalent interaction of CA and MP was highly selective for the R side chain of amino acids. Moreover, the adducts were more likely to form via C-N bonding than C-S bonding. This study provides new insights into the covalent interaction of plant polyphenols and meat proteins, which has important implications for the rational use of plant polyphenols in the meat processing industry.

Funder

National Nature Science Foundation of China

Fundamental Research Funds for the Central Universities

Key Technologies Research and Development Program

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3