Study on the Effect of Foam Stability on the Properties of Foamed Lightweight Soils

Author:

Liu Hao1,Shen Cong2,Li Jixin1,Zhang Gaoke2,Wang Yongsheng1,Wan Huiwen2

Affiliation:

1. China Construction Second Engineering Bureau Limited East China Branch, Shanghai 200135, China

2. School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China

Abstract

The properties of prepared foamed lightweight soils (FLSs) using prefabricated foam requires high foam stability. This paper investigates the geometrical characteristics of different foam densities, different types of foaming agents in the air, and the presence of slurry. Then, it studies their effects on the pore structure and mechanical properties of FLS. Results show that with the increase in foam density the bleeding rate of foam in the air for 1 h increases and the foam with a foam density of 50 kg/m3 is the most stable in the air. The stability of foam in slurry is not directly related to the property of foam in the air. The FLS prepared with the same foaming agent had the best performance with the FLS designed with a foam density of 50 kg/m3, which had the smallest average pore size and the most minor pore size distribution, and had the highest compressive strength. Among the three different foaming agents, Type-S was the best, and the slurry had the lowest rate of increase in wet density after the defoaming test, indicating that the foam had the best stability in the cement slurry. The FLS prepared with the density of 50 kg/m3 using the Type-S foaming agent and mixed with the slurry of cement, fly ash:slag:water = 105:105:140:227.5, was hardened to a mean pore size of 299 μm, and the 7 days, 28 days, and 56 days compressive strengths were 0.92 MPa, 2.04 MPa, and 2.48 MPa, respectively, which had the smallest average pore size and the highest compressive strength among the FLSs prepared using the three foaming agents.

Funder

China Construction Group Limited Project: “Integrated Construction Technology Research on Soft Ground Track Grade High Speed Road”

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3