Global-Local Collaborative Learning Network for Optical Remote Sensing Image Change Detection

Author:

Li Jinghui1ORCID,Shao Feng1ORCID,Liu Qiang1,Meng Xiangchao1

Affiliation:

1. Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China

Abstract

Due to the widespread applications of change detection technology in urban change analysis, environmental monitoring, agricultural surveillance, disaster detection, and other domains, the task of change detection has become one of the primary applications of Earth orbit satellite remote sensing data. However, the analysis of dual-temporal change detection (CD) remains a challenge in high-resolution optical remote sensing images due to the complexities in remote sensing images, such as intricate textures, seasonal variations in imaging time, climatic differences, and significant differences in the sizes of various objects. In this paper, we propose a novel U-shaped architecture for change detection. In the encoding stage, a multi-branch feature extraction module is employed by combining CNN and transformer networks to enhance the network’s perception capability for objects of varying sizes. Furthermore, a multi-branch aggregation module is utilized to aggregate features from different branches, providing the network with global attention while preserving detailed information. For dual-temporal features, we introduce a spatiotemporal discrepancy perception module to model the context of dual-temporal images. Particularly noteworthy is the construction of channel attention and token attention modules based on the transformer attention mechanism to facilitate information interaction between multi-level features, thereby enhancing the network’s contextual awareness. The effectiveness of the proposed network is validated on three public datasets, demonstrating its superior performance over other state-of-the-art methods through qualitative and quantitative experiments.

Funder

Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3