The Bees Algorithm Tuned Sliding Mode Control for Load Frequency Control in Two-Area Power System

Author:

Shouran MokhtarORCID,Anayi Fatih,Packianather Michael

Abstract

This paper proposes a design of Sliding Mode Control (SMC) for Load Frequency Control (LFC) in a two-area electrical power system. The mathematical model design of the SMC is derived based on the parameters of the investigated system. In order to achieve the optimal use of the proposed controller, an optimisation tool called the Bees Algorithm (BA) is suggested in this work to tune the parameters of the SMC. The dynamic performance of the power system with SMC employed for LFC is studied by applying a load disturbance of 0.2 pu in area one. To validate the supremacy of the proposed controller, the results are compared with those of recently published works based on Fuzzy Logic Control (FLC) tuned by Teaching–Learning-Based Optimisation (TLBO) algorithm and the traditional PID optimised by Lozi map-based Chaotic Optimisation Algorithm (LCOA). Furthermore, the robustness of SMC-based BA is examined against parametric uncertainties of the electrical power system by simultaneous changes in certain parameters of the testbed system with 40% of their nominal values. Simulation results prove the superiority and the robustness of the proposed SMC as an LFC system for the investigated power system.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3