Road Network Extraction from SAR Images with the Support of Angular Texture Signature and POIs

Author:

Sun Na,Feng Yongjiu,Tong Xiaohua,Lei Zhenkun,Chen ShuruiORCID,Wang ChaoORCID,Xu Xiong,Jin Yanmin

Abstract

Urban road network information is an important part of modern spatial information infrastructure and is crucial for high-precision navigation map production and unmanned driving. Synthetic aperture radar (SAR) is a widely used remote-sensing data source, but the complex structure of road networks and the noises in images make it very difficult to extract road information through SAR images. We developed a new method of extracting road network information from SAR images by considering angular (A) and texture (T) features in the sliding windows and points of interest (POIs, or P), and we named this method ATP-ROAD. ATP-ROAD is a sliding window-based semi-automatic approach that uses the grayscale mean, grayscale variance, and binary segmentation information of SAR images as texture features in each sliding window. Since POIs have much-duplicated information, this study also eliminates duplicated POIs considering distance and then selects a combination of POI linkages by discerning the direction of these POIs to initially determine the road direction. The ATP-ROAD method was applied to three experimental areas in Shanghai to extract the road network using China’s Gaofen-3 imagery. The experimental results show that the extracted road network information is relatively complete and matches the actual road conditions, and the result accuracy is high in the three different regions, i.e., 89.57% for Area-I, 96.88% for Area-II, and 92.65% for Area-III. Our method together with our extraction software can be applied to extract information about road networks from SAR images, providing an alternative for enriching the variety of road information.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3