Analysis of the Anomalous Environmental Response to the 2022 Tonga Volcanic Eruption Based on GNSS

Author:

Zhou Maosheng,Gao HaoORCID,Yu DingfengORCID,Guo JinyunORCID,Zhu Lin,Yang Lei,Pan ShunqiORCID

Abstract

On 15 January 2022, a violent eruption and tsunami of the Hunga Tonga-Hunga Ha’apai (HTHH) volcano in Tonga, South Pacific, caused widespread international concern. In order to detect the anomalous environmental response caused by the HTHH volcanic eruption based on GNSS ionospheric data, GNSS tropospheric data and GNSS coordinate time series, a new method combining the zenith non-hydrostatic delay difference method and the extreme-point symmetric mode decomposition (ESMD) method, was proposed to detect tropospheric anomalies. The moving interquartile range method and the ESMD method were introduced to detect ionospheric anomalous and coordinate time series anomalies, respectively. The results showed that 9–10 h before the eruption of the Tonga volcano and 11–12 h after the eruption of the Tonga volcano, obvious total electron content (TEC) anomalies occurred in the volcanic eruption center and its northeast and southeast, with the maximum abnormal value of 15 TECU. Significant tropospheric anomalies were observed on the day of the HTHH volcano eruption as well as 1–3 days and 16–17 days after the eruption, and the abnormal intensity was more than 10 times that of normal. The coordinate time series in direction E showed very significant anomalies at approximately 2:45 p.m. on 14 January, at approximately 4:30 a.m.–5:40 a.m. on 15 January, and at approximately 3:45 a.m. on 16 January, with anomalies reaching a maximum of 7–8 times daily. The abnormality in the direction north (N) is not obvious. Very prominent anomalies can be observed in the direction up (U) at approximately 4:30 a.m.–5:40 a.m., with the intensity of the anomalies exceeding the normal by more than 10 times. In this study, GNSS was successfully used to detect the anomalous environmental response during this HTHH volcano eruption.

Funder

National Natural Science Foundation of China

the Key Research and Development Program of Shandong

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference30 articles.

1. Global Propagation of Ionospheric Disturbances Associated With the 2022 Tonga Volcanic Eruption

2. 2022 Tonga Volcanic Eruption Induced Global Propagation of Ionospheric Disturbances via Lamb Waves

3. Volcano Eruption in Tonga Was a Once-in-a-Millennium Event https://www.newscientist.com/article/2304822-volcano-eruption-in-tonga-was-a-once-in-a-millennium-event

4. Deeply explosive

5. Ionospheric Precursors of Earthquakes;Pulinets,2005

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3