Chen–Ricci Inequality for Isotropic Submanifolds in Locally Metallic Product Space Forms

Author:

Li Yanlin1ORCID,Khan Meraj Ali2ORCID,Aquib MD2,Al-Dayel Ibrahim2ORCID,Youssef Maged Zakaria2

Affiliation:

1. School of Mathematics, Hangzhou Normal University, Hangzhou 311121, China

2. Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 65892, Riyadh 11566, Saudi Arabia

Abstract

In this article, we study isotropic submanifolds in locally metallic product space forms. Firstly, we establish the Chen–Ricci inequality for such submanifolds and determine the conditions under which the inequality becomes equality. Additionally, we explore the minimality of Lagrangian submanifolds in locally metallic product space forms, and we apply the result to create a classification theorem for isotropic submanifolds whose mean curvature is constant. More specifically, we have demonstrated that the submanifolds are either a product of two Einstein manifolds with Einstein constants, or they are isometric to a totally geodesic submanifold. To support our findings, we provide several examples.

Funder

Imam Mohammed Ibn Saud Islamic University

Publisher

MDPI AG

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3