Review on Some Boundary Value Problems Defining the Mean First-Passage Time in Cell Migration

Author:

Serrano Hélia1ORCID,Álvarez-Estrada Ramón F.2ORCID

Affiliation:

1. Departamento de Matemáticas, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain

2. Departamento de Física Teórica, Facultad de Físicas, Universidad Complutense de Madrid, 28040 Madrid, Spain

Abstract

The mean first-passage time represents the average time for a migrating cell within its environment, starting from a certain position, to reach a specific location or target for the first time. In this feature article, we provide an overview of the characterization of the mean first-passage time of cells moving inside two- or three-dimensional domains, subject to various boundary conditions (Dirichlet, Neumann, Robin, or mixed), through the so-called adjoint diffusion equation. We concentrate on reducing the latter to inhomogeneous linear integral equations for certain density functions on the boundaries. The integral equations yield the mean first-passage time exactly for a very reduced set of boundaries. For various boundary surfaces, which include small deformations of the exactly solvable boundaries, the integral equations provide approximate solutions. Moreover, the method also allows to deal approximately with mixed boundary conditions, which constitute a genuine long-standing and open problem. New plots, figures, and discussions are presented, aimed at clarifying the analysis.

Publisher

MDPI AG

Reference27 articles.

1. Dissecting the metastatic cascade;Pantel;Nat. Rev. Cancer,2004

2. Mathematical modelling of cancer cell invasion of tissue: The rule of urokinase plasminogen activation system;Chaplain;Math. Meth. Appl. Sci.,2005

3. Migration and Proliferation Dichotomy in Tumor-Cell Invasion;Fedotov;Phys. Rev. Lett.,2007

4. Liang, L., Norrelykke, S.F., and Cox, E.C. (2008). Persistent cell motion in the absence of external signals: A search strategy for eukaryotic cells. PLoS ONE, 3.

5. Mathematical modelling of cancer invasion: A review;Suzuki;Methods of Mathematical Oncology,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3