Evaluation and Optimization of a Cross-Rib Micro-Channel Heat Sink

Author:

Chen Haiying,Chen Chuan,Zhou Yunyan,Yang Chenglin,Song Gang,Hou Fengze,Jiao Binbin,Liu Ruiwen

Abstract

This article presents a novel cross-rib micro-channel (MC-CR) heat sink to make fluid self-rotate. For a thermal test chip (TTC) with 100 w/cm2, the cross-ribs micro-channel were compared with the rectangular (MC-R) and horizontal rib micro-channel (MC-HR) heat sinks. The results show that, with the cross-rib micro-channel, the junction temperature of the thermal test chip was 336.49 K, and the pressure drop was 22 kPa. Compared with the rectangular and horizontal ribs heat sink, the cross-rib micro-channel had improvements of 28.6% and 14.3% in cooling capability, but the pressure drop increased by 10.7-fold and 5.5-fold, respectively. Then, the effects of the aspect ratio (λ) of micro-channel in different flow rates were studied. It was found that the aspect ratio and cooling performance were non-linear. To reduce the pressure drop, the inclination (α) and spacing (S) of the cross-ribs were optimized. When α = 30°, S = 0.1 mm, and λ = 4, the pressure drop was reduced from 22 kPa to 4.5 kPa. In addition, the heat dissipation performance of the rectangular, staggered fin (MC-SF), staggered rib (MC-SR) and cross-rib micro-channels were analyzed in the condition of the same pressure drop, MC-CR still has superior heat dissipation performance.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3