The Deubiquitylase USP4 Interacts with the Water Channel AQP2 to Modulate Its Apical Membrane Accumulation and Cellular Abundance

Author:

Murali Sathish,Aroankins Takwa,Moeller Hanne,Fenton Robert

Abstract

Aquaporin 2 (AQP2) mediates the osmotic water permeability of the kidney collecting duct in response to arginine vasopressin (VP) and is essential for body water homeostasis. VP effects on AQP2 occur via long-term alterations in AQP2 abundance and short-term changes in AQP2 localization. Several of the effects of VP on AQP2 are dependent on AQP2 phosphorylation and ubiquitylation; post-translational modifications (PTM) that modulate AQP2 subcellular distribution and function. Although several protein kinases, phosphatases, and ubiquitin E3 ligases have been implicated in AQP2 PTM, how AQP2 is deubiquitylated or the role of deubiquitylases (DUBS) in AQP2 function is unknown. Here, we report a novel role of the ubiquitin-specific protease USP4 in modulating AQP2 function. USP4 co-localized with AQP2 in the mouse kidney, and in mpkCCD14 cells USP4 and AQP2 abundance are increased by VP. AQP2 and USP4 co-immunoprecipitated from mpkCCD14 cells and mouse kidney, and in vitro, USP4 can deubiquitylate AQP2. In mpkCCD14 cells, shRNA mediated knockdown of USP4 decreased AQP2 protein abundance, whereas no changes in AQP2 mRNA levels or VP-induced cAMP production were detected. VP-induced AQP2 membrane accumulation in knockdown cells was significantly reduced, which was associated with higher levels of ubiquitylated AQP2. AQP2 protein half-life was also significantly reduced in USP4 knockdown cells. Taken together, the data suggest that USP4 is a key regulator of AQP2 deubiquitylation and that loss of USP4 leads to increased AQP2 ubiquitylation, decreased AQP2 levels, and decreased cell surface AQP2 accumulation upon VP treatment. These studies have implications for understanding body water homeostasis.

Funder

Novo Nordisk Fonden

Lundbeckfonden

Publisher

MDPI AG

Subject

General Medicine

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Regulation of the water channel aquaporin-2 by cullin E3 ubiquitin ligases;American Journal of Physiology-Renal Physiology;2024-05-01

2. Aquaporins in Urinary System;Advances in Experimental Medicine and Biology;2023

3. Protein Structure and Modification of Aquaporins;Advances in Experimental Medicine and Biology;2023

4. Binding of Vialinin A and p-Terphenyl Derivatives to Ubiquitin-Specific Protease 4 (USP4): A Molecular Docking Study;Molecules;2022-09-11

5. Insight into the Mammalian Aquaporin Interactome;International Journal of Molecular Sciences;2022-08-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3