Abstract
Soil cadmium (Cd) pollution is a serious environmental problem imperiling food safety and human health. The endophyte Epichloë gansuensis can improve the tolerance of Achnatherum inebrians to Cd stress. However, it is still unknown whether and how the endophyte helps host plants build up a specific bacterial community when challenged by CdCl2. In this study, the responses of the structure and function of bacterial community and root exudates of E+ (E. gansuensis infected) and E− (E. gansuensis uninfected) plants to Cd stress were investigated. Analysis of bacterial community structure indicated that the rhizosphere bacterial community predominated over the root endosphere bacterial community in enhancing the resistance of CdCl2 in a host mediated by E. gansuensis. E+ plant strengthened the interspecific cooperation of rhizosphere bacterial species. Moreover, the analysis of root exudates demonstrated E. gansuensis and increased the contents of organic acids and amino acids under Cd stress, and most root exudates were significantly correlated with rhizosphere bacteria. These results suggested that E. gansuensis employed a specific strategy to recruit distinct rhizosphere bacterial species and relevant functions by affecting root exudates to improve the tolerance of the host to Cd stress. This study provides a firm foundation for the potential application of symbionts in improving phytostabilization efficiency.
Funder
Natural Science Foundation of China
Joint Fund of the Natural Science Foundation of China and the Karst Science Research Center of Guizhou Province
Foundation of Science and Technology of Gansu Province
Changjiang Scholars and innovative Research Team in University
Fundamental Research Funds for the Central Universities
Open Project of State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University
Lanzhou University “Double First-Class” guiding special project-team construction fund-scientific research start-up fee standard
Technical service agreement on research and development of beneficial microbial agents for Alpine Rhododendron
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献