Abstract
We performed molecular dynamics simulation to elucidate the adsorption behavior of hydrogen (H2), carbon dioxide (CO2), and methane (CH4) on four sub-models of type II kerogens (organic matter) of varying thermal maturities over a wide range of pressures (2.75 to 20 MPa) and temperatures (323 to 423 K). The adsorption capacity was directly correlated with pressure but indirectly correlated with temperature, regardless of the kerogen or gas type. The maximum adsorption capacity was 10.6 mmol/g for the CO2, 7.5 mmol/g for CH4, and 3.7 mmol/g for the H2 in overmature kerogen at 20 MPa and 323 K. In all kerogens, adsorption followed the trend CO2 > CH4 > H2 attributed to the larger molecular size of CO2, which increased its affinity toward the kerogen. In addition, the adsorption capacity was directly associated with maturity and carbon content. This behavior can be attributed to a specific functional group, i.e., H, O, N, or S, and an increase in the effective pore volume, as both are correlated with organic matter maturity, which is directly proportional to the adsorption capacity. With the increase in carbon content from 40% to 80%, the adsorption capacity increased from 2.4 to 3.0 mmol/g for H2, 7.7 to 9.5 mmol/g for CO2, and 4.7 to 6.3 mmol/g for CH4 at 15 MPa and 323 K. With the increase in micropores, the porosity increased, and thus II-D offered the maximum adsorption capacity and the minimum II-A kerogen. For example, at a fixed pressure (20 MPa) and temperature (373 K), the CO2 adsorption capacity for type II-A kerogen was 7.3 mmol/g, while type II-D adsorbed 8.9 mmol/g at the same conditions. Kerogen porosity and the respective adsorption capacities of all gases followed the order II-D > II-C > II-B > II-A, suggesting a direct correlation between the adsorption capacity and kerogen porosity. These findings thus serve as a preliminary dataset on the gas adsorption affinity of the organic-rich shale reservoirs and have potential implications for CO2 and H2 storage in organic-rich formations.
Funder
King Fahd University of Petroleum and Minerals
Khalifa University of Science and Technology
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Reference95 articles.
1. Climate Change 2007: Mitigation of Climate Change: Contribution of Working III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,2007
2. Introduction to Carbon Dioxide Capture and Storage;Raza,2019
3. A screening criterion for selection of suitable CO 2 storage sites
4. United Nations Framework Convention on Climate Change;Proceedings of the Conference of the Parties on its Twenty-First Session, Held in Paris from 30 November to 13 December 2015 Addendum Part Two: Action Taken by the Conference of the Parties at its Twenty-First Session,2015
5. CO2 Capture by Virgin Ivy Plants Growing Up on the External Covers of Houses as a Rapid Complementary Route to Achieve Global GHG Reduction Targets
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献