Author:
Hu Manman,Qi Zhengyang,Ren Zheng,Tong Jing,Wang Baoju,Wu Zhanhui,Hao Jinghong,Liu Ning
Abstract
Warm temperatures induce plant bolting accompanied by flower initiation, where endogenous auxin is dynamically associated with accelerated growth. Auxin signaling is primarily regulated by a family of plant-specific transcription factors, AUXIN RESPONSE FACTORS (ARFs), which either activate or repress the expression of downstream genes in response to developmental and environmental cues. However, the relationship between ARFs and bolting has not been completely understood in lettuce yet. Here, we identified 24 LsARFs (Lactuca sativa ARFs) in the lettuce genome. The phylogenetic tree indicated that LsARFs could be classified into three clusters, which was well supported by the analysis of exon–intron structure, consensus motifs, and domain compositions. RNA-Seq analysis revealed that more than half of the LsARFs were ubiquitously expressed in all tissues examined, whereas a small number of LsARFs responded to UV or cadmium stresses. qRT-PCR analysis indicated that the expression of most LsARFs could be activated by more than one phytohormone, underling their key roles as integrative hubs of different phytohormone signaling pathways. Importantly, the majority of LsARFs displayed altered expression profiles under warm temperatures, implying that their functions were tightly associated with thermally accelerated bolting in lettuce. Importantly, we demonstrated that silencing of LsARF8a, expression of which was significantly increased by elevated temperatures, resulted in delayed bolting under warm temperatures, suggesting that LsARF8a might conduce to the thermally induced bolting. Together, our results provide molecular insights into the LsARF gene family in lettuce, which will facilitate the genetic improvement of the lettuce in an era of global warming.
Funder
Beijing Agricultural and Forestry Sciences
National Research Engineering Center for Vegetables
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献