Affiliation:
1. Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37008 Salamanca, Spain
2. Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, University of Salamanca, 37008 Salamanca, Spain
3. Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37008 Salamanca, Spain
Abstract
Currently available data on the involvement of neuropeptide Y (NPY), peptide YY (PYY), and pancreatic polypeptide (PP) and their receptors (YRs) in cancer are updated. The structure and dynamics of YRs and their intracellular signaling pathways are also studied. The roles played by these peptides in 22 different cancer types are reviewed (e.g., breast cancer, colorectal cancer, Ewing sarcoma, liver cancer, melanoma, neuroblastoma, pancreatic cancer, pheochromocytoma, and prostate cancer). YRs could be used as cancer diagnostic markers and therapeutic targets. A high Y1R expression has been correlated with lymph node metastasis, advanced stages, and perineural invasion; an increased Y5R expression with survival and tumor growth; and a high serum NPY level with relapse, metastasis, and poor survival. YRs mediate tumor cell proliferation, migration, invasion, metastasis, and angiogenesis; YR antagonists block the previous actions and promote the death of cancer cells. NPY favors tumor cell growth, migration, and metastasis and promotes angiogenesis in some tumors (e.g., breast cancer, colorectal cancer, neuroblastoma, pancreatic cancer), whereas in others it exerts an antitumor effect (e.g., cholangiocarcinoma, Ewing sarcoma, liver cancer). PYY or its fragments block tumor cell growth, migration, and invasion in breast, colorectal, esophageal, liver, pancreatic, and prostate cancer. Current data show the peptidergic system’s high potential for cancer diagnosis, treatment, and support using Y2R/Y5R antagonists and NPY or PYY agonists as promising antitumor therapeutic strategies. Some important research lines to be developed in the future will also be suggested.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献