An Aeromagnetic Compensation Strategy for Large UAVs

Author:

Ye Liwei1,Yu Zhentao2,Zhang Yaxun1,Chi Cheng2ORCID,Cheng Pu2,Chen Jie2

Affiliation:

1. Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266500, China

2. Institute of Remote Sensing, Navy Submarine Academy, Qingdao 266000, China

Abstract

Aeromagnetic surveys are widely used in geological exploration, mineral resource assessment, environmental monitoring, military reconnaissance, and other areas. It is necessary to perform magnetic compensation for interference in these fields. In recent years, large unmanned aerial vehicles (UAVs) have been more suitable for magnetic detection missions because of the greater loads they can carry. This article proposes some methods for the magnetic compensation of large multiload UAVs. Because of the interference of the large platform and instrument noise, the standard deviations (stds) of the compensation data used in this paper are larger. At the beginning of this article, using the traditional T-L model, we avoid the shortcomings of the anti-magnetic interference ability of triaxial magnetic gate magnetometers. The direction cosine information is obtained by using an inertial navigation system, the global positioning system, and a triaxial magnetic gate magnetometer. Then, we increase the amplitude of the maneuvers in the compensation process; this reduces the multicollinearity problems in the compensation matrix to a certain extent, but it also results in greater magnetic field interference. Lastly, we employ the method of Lasso regularization Newton iteration (LRNM). Compared to the traditional methods of least squares (LS) and singular value decomposition (SVD), LRNM provides improvements of 34% and 27%, respectively. In summary, this series of schemes can be used to perform effective compensation for large multi-load UAVs and improve the actual use of large UAVs, making them more accurate in the measurement of aeromagnetic survey data.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3