Quantitative Evaluation of Municipal Wastewater Disinfection by 280 nm UVC LED

Author:

Yu Linlong1ORCID,Acosta Nicole2,Bautista Maria A.3,McCalder Janine3,Himann Jode4,Pogosian Samuel4,Hubert Casey R. J.3,Parkins Michael D.2,Achari Gopal1ORCID

Affiliation:

1. Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada

2. Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada

3. Department of Biological Science, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada

4. Nemalux LED Lighting, 1018 72 Ave NE, Calgary, AB T2E 8V9, Canada

Abstract

UV-LED irradiation has attracted attention in water and wastewater disinfection applications. However, no studies have quantitatively investigated the impact of light intensity on the UV dosage for the same magnitude of disinfection. This study presents a powerful 280 nm UV-LED photoreactor with adjustable light intensity to disinfect municipal wastewater contaminated with E. coli, SARS-CoV-2 genetic materials and others. The disinfection performance of the 280 nm LED was also compared with 405 nm visible light LEDs, in terms of inactivating E. coli and total coliforms, as well as reducing cATP activities. The results showed that the UV dose needed per log reduction of E. coli and total coliforms, as well as cATP, could be decreased by increasing the light intensity within the investigated range (0–9640 µW/cm2). Higher energy consumption is needed for microbial disinfection using the 405 nm LED when compared to 280 nm LED. The signal of SARS-CoV-2 genetic material in wastewater and the SARS-CoV-2 spike protein in pure water decreased upon 280 nm UV irradiation.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3