Mathematical Modeling in Bioinformatics: Application of an Alignment-Free Method Combined with Principal Component Analysis

Author:

Bielińska-Wąż Dorota1,Wąż Piotr2,Błaczkowska Agata1ORCID,Mandrysz Jan1ORCID,Lass Anna3,Gładysz Paweł3ORCID,Karamon Jacek4ORCID

Affiliation:

1. Department of Radiological Informatics and Statistics, Medical University of Gdańsk, 80-210 Gdańsk, Poland

2. Department of Nuclear Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland

3. Department of Tropical Parasitology, Medical University of Gdańsk, 81-519 Gdynia, Poland

4. Department of Parasitology and Invasive Diseases, National Veterinary Research Institute, 24-100 Puławy, Poland

Abstract

In this paper, an alignment-free bioinformatics technique, termed the 20D-Dynamic Representation of Protein Sequences, is utilized to investigate the similarity/dissimilarity between Baculovirus and Echinococcus multilocularis genome sequences. In this method, amino acid sequences are depicted as 20D-dynamic graphs, comprising sets of “material points” in a 20-dimensional space. The spatial distribution of these material points is indicative of the sequence characteristics and is quantitatively described by sequence descriptors akin to those employed in dynamics, such as coordinates of the center of mass of the 20D-dynamic graph and the tensor of the moment of inertia of the graph (defined as a symmetric matrix). Each descriptor unveils distinct features of similarity and is employed to establish similarity relations among the examined sequences, manifested either as a symmetric distance matrix (“similarity matrix”), a classification map, or a phylogenetic tree. The classification maps are introduced as a new way of visualizing the similarity relations obtained using the 20D-Dynamic Representation of Protein Sequences. Some classification maps are obtained using the Principal Component Analysis (PCA) for the center of mass coordinates and normalized moments of inertia of 20D-dynamic graphs as input data. Although the method operates in a multidimensional space, we also apply some visualization techniques, including the projection of 20D-dynamic graphs onto a 2D plane. Studies on model sequences indicate that the method is of high quality, both graphically and numerically. Despite the high similarity observed among the sequences of E. multilocularis, subtle discrepancies can be discerned on the 2D graphs. Employing this approach has led to the discovery of numerous new similarity relations compared to our prior study conducted at the DNA level, using the 4D-Dynamic Representation of DNA/RNA Sequences, another alignment-free bioinformatics method also introduced by us.

Funder

National Science Centre, Poland

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3