Real-Time Assessment of the Size Changes of Individual Sub-Visible Protein Particles under Buffer Variations: A Microfluidic Study

Author:

Kuzman Drago1,Klančnik Urška2ORCID,Grum Eva1,Derganc Jure2

Affiliation:

1. Novartis d.o.o., Kolodvorska 27, 1234 Mengeš, Slovenia

2. Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia

Abstract

Protein particles in biological drugs can significantly impact drug efficacy and carry the risk of adverse effects. Despite advancements, the understanding and control of particle formation in biopharmaceutical manufacturing remain incomplete. Therefore, further investigation into protein particles is warranted, especially considering that novel formats of biological drugs may be more susceptible to aggregation and particle formation than conventional monoclonal antibodies. In this study, we introduce a microfluidic approach for the real-time analysis of individual sub-visible protein particles during buffer exchange. We find that the modulation of intermolecular forces, achieved by changing the buffer pH or urea concentration, leads to the reversible swelling and shrinkage of particles by up to 50%, which is a consequence of altered intermolecular distances. Additionally, we identify a discrepancy in the biophysical behavior of protein particles compared to monomeric protein. This finding highlights the limited predictive power of commonly applied biophysical characterization methods for particle formation in early formulation development. Moreover, the observed particle swelling may be associated with manufacturing deviations, such as filter clogging. These results highlight the importance of studying individual particles to gain a comprehensive insight into particle behavior and the impact of formulation variations in the biopharmaceutical industry.

Funder

Slovenian Research Agency

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3