Satellite Observation for Evaluating Cloud Properties of the Microphysical Schemes in Weather Research and Forecasting Simulation: A Case Study of the Mei-Yu Front Precipitation System

Author:

Chung Kao-Shen,Chiu Hsien-Jung,Liu Chian-YiORCID,Lin Meng-Yue

Abstract

Radiative transfer model can be used to convert the geophysical variables (e.g., atmospheric thermodynamic state) to the radiation field. In this study, the Community Radiative Transfer Model (CRTM) is used to connect regional Weather Research and Forecasting (WRF) model outputs and satellite observations. A heavy rainfall event caused by the Mei-Yu front on the June 1, 2017, in the vicinity of Taiwan, was chosen as a case study. The simulated cloud performance of WRF with four microphysics schemes (i.e., Goddard (GCE), WRF single-moment 6 class (WSM), WRF double-moment 6 class (WDM), and Morrison (MOR) schemes) was investigated objectively using multichannel observed satellite radiances from a Japanese geostationary satellite Himawari-8. The results over the East Asia domain (9 km) illustrate that all four microphysics schemes overestimate cloudy pixels, in particular, the high cloud of simulation with MOR when comparing with satellite data. Sensitivity tests reveal that the excess condensation of ice at ≥14 km with MOR might be associated with the overestimated high cloud cover. However, GCE displayed an improved performance on water vapor channel in clear skies. When focusing on Taiwan using a higher (3 km) model resolution, each scheme displayed a decent performance on cloudy pixels. In the grid-by-grid skill score analysis, the distribution of high clouds was the most accurate among the three cloud types. The results also suggested that all schemes required a longer simulation time to describe the low cloud horizontal extend.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3