Optimization of Heat Treatment for 38Si7 Spring Steel with Excellent Mechanical Properties and Controlled Decarburization

Author:

Wang Xian-Wen,Hu Qing-Feng,Zhang Chao-LeiORCID,Chen Lie,Zhu Chang-Yong,Tao Bo,Jiang Bo,Liu Ya-Zheng

Abstract

Optimizing the heat treatment procedure with 13 mm diameter 38Si7 spring steel is critical for developing high-performance, low-cost, large spring steel for railway clips. The effects of quenching temperature, holding time, tempering temperature, and tempering time on the microstructure and mechanical properties were investigated using an orthogonal experiment, designed with four factors and three levels. The best heat treatment settings were explored, as well as the variation laws of mechanical properties, decarburization behavior, and fracture morphology. The results demonstrated that quenching temperature and tempering temperature had the most impact on plasticity and tempering temperature, while time had the most effect on strength. The optimized heat treatment schemes made the elongation increase by up to 106% and the reduction in area increase by up to 67%, compared with the standard BS EN 10089-2002, and there were mixed fractures caused by ductility and brittleness. The fracture tests showed a good performance of 20.2 GPa·%, and the heat treatment processes’ minimum decarburization depth of 93.4 μm was determined. The optimized process would obtain stronger plastic deposition and better decarburization performance. The microstructure was simply lightly tempered martensite, and the matrix still retained the acicular martensite. The optimal heat treatment process is quenching at 900 °C for 30 min (water cooling), followed by tempering at 430 °C for 60 min (air cooling). The research led to a solution for increasing the overall mechanical characteristics and decreasing the surface decarburization of 38Si7 spring steel with a diameter of 13 mm, and it set the foundation for increasing the mass production of railway clips of this size.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3