Abstract
Highly porous monolithic aerogels based on ZnO photocatalyst and syndiotactic polystyrene (s-PS) were obtained by supercritical CO2 treatment of ZnO/s-PS gels. The prepared aerogels were characterized and their photocatalytic activity was evaluated using phenol and toluene as water pollutant models. The s-PS nanoporous crystalline phase, able to absorb pollutant molecules, was proven to be necessary to ensure high photocatalytic efficiency as the aerogel acts not only as a support, but also as pollutant pre-concentrator. The reusability of ZnO/s-PS aerogels is also strong showing no decrease in photocatalytic activity after six consecutive degradation trials. Finally, the aerogel matrix prevents ZnO dissolution occurring under acidic conditions and promotes a selective removal of the pollutants. The synergy between the photocatalyst and the innovative polymeric support provides the composite system with robustness, chemical stability, easy recovery after treatment, high efficiency of pollutant removal with a marked selectivity which make these materials promising for large scale applications.
Subject
General Materials Science,General Chemical Engineering
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献