Mapping of Ecological Environment Based on Google Earth Engine Cloud Computing Platform and Landsat Long-Term Data: A Case Study of the Zhoushan Archipelago

Author:

Chen Chao1ORCID,Wang Liyan2,Yang Gang3ORCID,Sun Weiwei3,Song Yongze4ORCID

Affiliation:

1. School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou 215009, China

2. School of Information Engineering, Zhejiang Ocean University, Zhoushan 316022, China

3. Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo 315211, China

4. School of Design and the Built Environment, Curtin University, Perth 6102, Australia

Abstract

In recent years, with the rapid advancement of China’s urbanization, the contradiction between urban development and the ecological environment has become increasingly prominent, and the urban ecological system now faces severe challenges. In this study, we proposed an ecological index-based approach to monitor and evaluate the ecological environment using a Google Earth Engine cloud-based platform and Landsat time series. Firstly, a long-term series of Landsat images was obtained to construct and calculate the remote sensing-based ecological index (RSEI). Then, the Theil–Sen median estimation and the Mann–Kendall test were used to evaluate the trend and significance of the RSEI time series and combined with the Hurst index to predict the future development trend of the ecological environment in the study area. Finally, the coefficient of variation method was used to determine the temporal stability of the ecological environment. Taking Zhoushan Archipelago, China, as the study area, we mapped the distribution of the ecological environment using a spatial resolution of 30 m and evaluated the ecological environment from 1985 to 2020. The results show that (1) from 1985 to 2020, the average RSEI in the Zhoushan Archipelago decreased from 0.7719 to 0.5817, increasing at a rate of −24.64%. (2) The changes in the areas of each level of ecological environmental quality show that the ecological environment in the Zhoushan Archipelago generally exhibited a decreasing trend. During the study period, the proportion of the areas with excellent ecological environmental quality decreased by 38.83%, while the proportion of areas with poor and relatively poor ecological environmental quality increased by 20.03%. (3) Based on the overall change trend, the degradation in the ecological environment in the Zhoushan Archipelago was greater than the improvement, with the degradation area accounting for 84.35% of the total area, the improvement area accounting for 12.61% of the total area, and the stable area accounting for 3.05% of the total area. (4) From the perspective of the sustainability of the changes, in 86.61% of the study area, the RSEI exhibited positive sustainability, indicating that the sustainability of the RSEI was relatively strong. (5) The coefficient of variation in the RSEI was concentrated in the range of 0–0.40, having an average value of 0.1627 and a standard deviation of 0.1467, indicating that the RSEI values in the Zhoushan Archipelago during the study period were concentrated, the interannual fluctuations of the data were small, and the time series was relatively stable. The results of this study provide theoretical methods and a decision-making basis for the dynamic monitoring and regional governance of the ecological environment in island areas.

Funder

National Natural Science Foundation of China

Zhejiang Province Pioneering Soldier and Leading Goose R&D Project

Public Projects of Ningbo City

Ningbo Science and Technology Innovation 2025 Major Special Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3