A New Target Detection Method of Ferrography Wear Particle Images Based on ECAM-YOLOv5-BiFPN Network

Author:

He Lei1ORCID,Wei Haijun1,Wang Qixuan1

Affiliation:

1. Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China

Abstract

For mechanical equipment, the wear particle in the lubrication system during equipment operation can reflect the lubrication condition, wear mechanism, and severity of wear between equipment friction pairs. To solve the problems of false detection and missed detection of small, dense, and overlapping wear particles in the current ferrography wear particle detection model in a complex oil background environment, a new ferrography wear particle detection network, EYBNet, is proposed. Firstly, the MSRCR algorithm is used to enhance the contrast of wear particle images and reduce the interference of complex lubricant backgrounds. Secondly, under the framework of YOLOv5s, the accuracy of network detection is improved by introducing DWConv and the accuracy of the entire network is improved by optimizing the loss function of the detection network. Then, by adding an ECAM to the backbone network of YOLOv5s, the saliency of wear particles in the images is enhanced, and the feature expression ability of wear particles in the detection network is enhanced. Finally, the path aggregation network structure in YOLOv5s is replaced with a weighted BiFPN structure to achieve efficient bidirectional cross-scale connections and weighted feature fusion. The experimental results show that the average accuracy is increased by 4.46%, up to 91.3%, compared with YOLOv5s, and the detection speed is 50.5FPS.

Funder

Shanghai Engineering Research Center of Intelligent Ship Operation and Energy Efficiency Monitoring, Shanghai Science and Technology Program

Key Project of Natural Science Foundation of Anhui Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3