A Magnetically Coupled Electromagnetic Energy Harvester with Low Operating Frequency for Human Body Kinetic Energy

Author:

Li Xiang,Meng Jinpeng,Yang Chongqiu,Zhang HuirongORCID,Zhang Leian,Song RujunORCID

Abstract

In this paper, a magnetically coupled electromagnetic energy harvester (MCEEH) is proposed for harvesting human body kinetic energy. The proposed MCEEH mainly consists of a pair of spring-connected magnets, coils, and a free-moving magnet. Specifically, the interaction force between the magnets is repulsive. The main feature of this structure is the use of a magnetic-spring structure to weaken the hardening response caused by the repulsive force. The magnetic coupling method enables the energy harvester system to harvest energy efficiently at low frequency. The MCEEH is experimentally investigated for improving energy harvesting efficiency. Under harmonic excitation with an acceleration of 0.5 g, the MCEEH reaches resonance frequency at 8.8 Hz and the maximum output power of the three coils are 5.2 mW, 2.8 mW, and 2.5 mW, respectively. In the case of hand-shaking excitation, the generator can obtain the maximum voltage of 0.6 V under the excitation acceleration of 0.2 g and the excitation frequency of 3.4 Hz. Additionally, a maximum instantaneous power can be obtained of about 26 mW from the human body’s kinetic energy.

Funder

National Natural Science Foundation of China

Shenzhen Science and Technology Innovation Committee

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Energy Management Architectures for Dual Coil Electromagnetic Vibration Energy Harvesting Converter;2024 IEEE International Instrumentation and Measurement Technology Conference (I2MTC);2024-05-20

2. Optimization procedure of low frequency vibration energy harvester based on magnetic levitation;Applied Energy;2024-04

3. NaxSb Alloy-Based Low-Frequency Mechanical Energy Harvesters for Virtual Taste Sensations;ACS Applied Materials & Interfaces;2024-01-29

4. Nonlinear Dynamics of a 2DOF Magneto-Mechanical Harvester;Springer Proceedings in Mathematics & Statistics;2024

5. Design and characterization of non-linear electromagnetic energy harvester with enhanced energy output;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-11-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3