An Effective Framework for Deep-Learning-Enhanced Quantitative Microwave Imaging and Its Potential for Medical Applications

Author:

Yago Ruiz ÁlvaroORCID,Cavagnaro MartaORCID,Crocco LorenzoORCID

Abstract

Microwave imaging is emerging as an alternative modality to conventional medical diagnostics technologies. However, its adoption is hindered by the intrinsic difficulties faced in the solution of the underlying inverse scattering problem, namely non-linearity and ill-posedness. In this paper, an innovative approach for a reliable and automated solution of the inverse scattering problem is presented, which combines a qualitative imaging technique and deep learning in a two-step framework. In the first step, the orthogonality sampling method is employed to process measurements of the scattered field into an image, which explicitly provides an estimate of the targets shapes and implicitly encodes information in their contrast values. In the second step, the images obtained in the previous step are fed into a neural network (U-Net), whose duty is retrieving the exact shape of the target and its contrast value. This task is cast as an image segmentation one, where each pixel is classified into a discrete set of permittivity values within a given range. The use of a reduced number of possible permittivities facilitates the training stage by limiting its scope. The approach was tested with synthetic data and validated with experimental data taken from the Fresnel database to allow a fair comparison with the literature. Finally, its potential for biomedical imaging is demonstrated with a numerical example related to microwave brain stroke diagnosis.

Funder

European Union

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3