Dynamic Inversion of Inland Aquaculture Water Quality Based on UAVs-WSN Spectral Analysis

Author:

Wang Linhui,Yue Xuejun,Wang Huihui,Ling Kangjie,Liu Yongxin,Wang Jian,Hong Jinbao,Pen Wen,Song HoubingORCID

Abstract

The inland aquaculture environment is an artificial ecosystem, where the water quality is a key factor which is closely related to the economic benefits of inland aquaculture and the quality of aquatic products. Compared with marine aquaculture, inland aquaculture is normally smaller and susceptible to pollution, with poor self-purification capacity. Considering its low cost and large-scale monitoring ability, many researches have developed spectrum sensor on-board satellite platforms to allow remote monitoring of inland water surface. However, there remain many problems, such as low image resolution, poor flexible data acquisition, and anti-interference. Apart from that, the conventional forecasting model is of weak generalization ability and low accuracy. In our study, we combine unmanned aerial vehicles system (UAVs) with the wireless sensor network (WSN) to design a new ground water quality parameter and drone spectrum information acquisition approach, and to propose a novel dynamic network surgery-deep neural networks (DNS-DNNs) model based on multi-source feature fusion to forecast the distribution of dissolved oxygen (DO) and turbidity (TUB) in inland aquaculture areas. The result of using fused features, including characteristic spectrum, Gray-level co-occurrence matrix (GLCM) texture feature, and convolutional neural network (CNN) texture feature to build a model is that the characteristic spectrum+ CNN texture fusion features were the best input items for DNS-DNNs when forecasting DO, with the determination coefficient R 2 of the vertical set arriving at 0.8741, while the characteristic spectrum+ GLCM texture+ CNN texture fusion features were the best for TUB, with the R 2 reaching 0.8531. Compared with a variety of conventional models, our model had a better performance in the inversion of DO and TUB, and there was a strong correlation between predicted and real values: R 2 reached 0.8042 and 0.8346, whereas the root mean square error (RMSE) were only 0.1907 and 0.1794, separately. Our study provides a new insight about using remote sensing to rapidly monitor water quality in inland aquaculture regions.

Funder

SCIENCE AND TECHNOLOGY PLANNING PROJECT OF GUANGDONG

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference52 articles.

1. The social, economic, and environmental importance of inland fish and fisheries

2. A comparison of methane and nitrous oxide emissions from inland mixed-fish and crab aquaculture ponds

3. A remote wireless system for water quality online monitoring in intensive fish culture Compute;Zhu;Electron. Agric.,2010

4. A ZigBee wireless sensor network for monitoring an aquaculture recirculating system;Francisco;Appl. Res. Technol.,2012

5. Development and test of aquacultural water quality monitoring system based on wireless sensor network;Huang;Trans. Chin. Soc. Agric. Eng. (Trans. CSAE),2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3