Numerical Analysis on Transverse Splicing Structure for the Widening of a Long Multi-Span Highway Concrete Continuous Box Girder Bridge

Author:

Wu Wenqing,Zhang Hui,Liu Zheng,Wang Yunpeng

Abstract

For the bridge widening of long multi-span highway concrete continuous box girder with a conventional splicing structure, due to the large longitudinal difference deformation by concrete shrinkage and creep between the existing and new ones, the widened structure will have an overlarge bending deformation after widening, especially an obvious transverse deformation at the end of girder, which will lead to structural damage to the newly widened structure. To effectively absorb the difference deformation mentioned above, this study proposes a novel transverse splicing structure based on the folding effect of a corrugated steel plate (CSP) (hereinafter referred to as “the CSP splicing structure”). Then, a finite element structural analysis was performed on the mechanical properties of the widened structure with the CSP splicing structure, and compared to those of a widened structure adopting the conventional concrete splicing mode, to clarify the transverse load transferring mechanism of the structure. Finally, by conducting a sensitivity analysis on CSP thickness, corrugation length, splicing stitch width, and other structural parameters, a sound parameter combination scheme was put forward. According to the research results, to ensure effective utilization of the CSP folding effect, the corrugation pattern direction of CSP should be set as horizontal, and the wave angle as the degree of 90°. In addition, it mitigated the transverse tensile stress to effectively avoid concrete cracking feasibility on the top flange of the box girder at the end of the girder. This study offers a feasible way of avoiding the structural damage produced by an excess transverse deformation at the end of the girder after bridge widening of a long multi-span concrete continuous box girder.

Funder

National Nature Science Funding of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3