Synthesis of Aromatic Polyimides Based on 3,4′-Oxydianiline by One-Pot Polycondensation in Molten Benzoic Acid and Their Application as Membrane Materials for Pervaporation

Author:

Soldatova Anastasiia E.,Shamsutdinova Regina N.,Plisko Tatiana V.ORCID,Burts Katsiaryna S.ORCID,Tsegelskaya Anna Yu.,Khanin Dmitry A.,Monakhova Kristina Z.,Kurkin Tikhon S.,Bildyukevich Alexandr V.ORCID,Kuznetsov Alexander A.

Abstract

A series of aromatic polyimides based on the asymmetrical diamine 3,4ʹ-oxydianiline and various tetracarboxylic acid dianhydrides, both “rigid” and “flexible” structure, have been synthesized using the original method of one-pot high-temperature catalytic polycondensation in molten benzoic acid. The synthesized polyimides were investigated using fourier-transform infrared (FTIR) and 1H NMR spectroscopy, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), thermomechanical analysis (TMA) and wide-angle X-ray scattering (WAXS). It was found that the synthesized polyimides, depending on the used dianhydride, are characterized by different solubility in organic solvent and molten benzoic acid, molecular weight, glass transition temperature (Tg) from 198 to 270 °C, an amorphous or semi crystalline structure with the degree of crystallinity from 41 to 52%. The influence of the method of synthesis on the formation of the crystalline phase of polyimides was studied, and the obtained results were compared with the literature data. The effect of dianhydride chemical structure on the performance of polyimide in pervaporation more specifically, dehydratation of azeotropic isopropanol solution was investigated and compared with the commercially available polyetherimide Ultem 1000™. Membrane structure was studied using scanning electron microscopy. It was found that polyimide PI-DA is the most effective for separation of 88 wt.% isopropanol/12 wt.% water mixture compared to the polyimide PI-6FDA and commercial polyetherimide Ultem 1000™ demonstrating normalized permeation flux of 2.77 kg µm m−2 h−1 and separation factor of 264 (water content in permeate 97 wt.%).

Funder

Russian Foundation for Basic Research

Belarussian Republican Foundation for Fundamental Research

Publisher

MDPI AG

Subject

General Materials Science

Reference38 articles.

1. Mittal, V. High Performance Polymers and Engineering Plastics, 2011.

2. Bessonov, M.I., Koton, M.M., and Kudryavtsev, V.V. Polyimide, 1987.

3. Abajo, J., and de la Campa, J.G. Processable Aromatic Polyimides. Progress in Polyimide Chemistry I, 1999.

4. Advanced polyimide materials: Syntheses, physical properties and applications;Liaw;Prog. Polym. Sci.,2012

5. Processing and Properties of IM7/LARC [TM]-IAX2 Polyimide Composites;Hou;J. Adv. Mater.,1996

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3